How to report my result using REST slice viewer?

Han Zhang
Center for Cognition and Brain Disorders, Hangzhou Normal University napoleon1982@gmail.com
2013/12/30

Commonly, you got an activation for functional connectivity result based on either REST or SPM or other software. As long as this resultant map is in the MNI standard space, you can review it using REST slice viewer.

After several settings such as underlay and overlay images, threshold p value, threshold cluster size and connectivity criterion (this value decides two neighboring voxels are within one cluster or not, typically is set to 5), you will get several activated or functionally connected clusters:

Pressing Cl . Report, you will find cluster information in Matlab command window like this:

[^0]
Cluster 1

Number of voxels: 112
Peak MNI coordinate: -45-78-12
Peak MNI coordinate region: // Left Cerebrum // Occipital Lobe // Middle Occipital Gyrus // Gray Matter // brodmann area 19 // Occipital_Inf_L (aal)
Peak intensity: 17.5958
\# voxelsstructure
112 --TOTAL \# VOXELS-
91 Left Cerebrum
91 Left Cerebrum
68 Occipital_Inf_L (aal)
54 White Matter
40 Middle Occipital Gyrus
34 Gray Matter
27 brodmann area 19
21 Inferior Occipital Gyrus
20 Cerebelum_Crus1_L (aal)
16 Temporal Lobe
13 Fusiform Gyrus
12 Fusiform_L (aal)
10 Inferior Temporal Gyrus
Left Cerebellum
9 Declive
Cerebellum
Cerebellum Posterior Lobe
Sub-Gyral
brodmann area 18
2 Occipital_Mid_L (aal)

Cluster 2

Number of voxels: 1301
Peak MNI coordinate: 36-66-15
Peak MNI coordinate region: // Right Cerebrum // Occipital Lobe // Sub-Gyral // White Matter // undefined // Fusiform_R (aal)
Peak intensity: 18.9077
\# voxelsstructure
1301 --TOTAL \# VOXELS--
1203 Right Cerebrum
1076 Occipital Lobe
774 White Matter
381 Gray Matter

```
3 0 5 ~ M i d d l e ~ O c c i p i t a l ~ G y r u s ~
28 Lingual Gyrus
229 Lingual_R (aal)
2 0 3 \text { Cuneus}
1 7 9 \text { brodmann area } 1 8
1 5 3 \text { Fusiform R (aal)}
152 Occipital_Inf_R (aal)
1 4 9 \text { Sub-Gyral}
1 4 1 ~ C a l c a r i n e \& R ~ ( a a l )
138 Occipital_Mid_R (aal)
1 2 7 \text { Temporal Lobe}
1 1 3 \text { brodmann area } 1
105 Occipital_Sup_R (aal)
93 Inferior Occipital Gyrus
8 8 \text { Fusiform Gyrus}
83 Temporal Inf R (aal)
58 Temporal_Mid_R (aal)
5 7 \text { Right Cerebellum}
5 1 \text { Declive}
5 1 \text { Cerebellum Posterior Lobe}
45 Cerebelum_6_R (aal)
44 brodmann area 17
43 Middle Temporal Gyrus
3 8 \text { Cuneus_R (aal)}
3 2 \text { Cerebelum_Crus1_R (aal)}
30 brodmann area 37
2 4 \text { Inferior Temporal Gyrus}
    6 Cerebellum Anterior Lobe
    Culmen
    Superior Occipital Gyrus
    brodmann area }3
    Vermis 6(aal)
Number of voxels: }13
Peak MNI coordinate: 18-30 0
Peak MNI coordinate region: // Right Cerebrum // Sub-lobar // Thalamus // Gray Matter // undefined // Thalamus_R (aal)
Peak intensity: 9.7812
# voxelsstructure
    130 --TOTAL # VOXELS-
    73 Midbrain
    5 6 ~ R i g h t ~ C e r e b r u m ~
    53 Right Brainstem
    4 6 ~ S u b - l o b a r ~
    4 5 \text { Gray Matter}
    2 8 \text { White Matter}
    2 4 ~ E x t r a - N u c l e a r ~
    19 Left Brainstem
    1 6 \text { Red Nucleus}
    15 Hippocampus_R (aal)
    15 Thalamus
    Limbic Lobe
    Thalamus_R (aal)
    Parahippocampa Gyrus
    Pulvinar
    brodmann area }2
    Cerebro-Spinal Fluid
    Substania Nigra
    Sub-Gyral
    Third Ventricle
    Subthalamic Nucleus
    Lateral Ventricle
    Lateral Geniculum Body
    Caudate Tail
    Lingual R (aal)
    Medial Geniculum Body
    Caudate
    brodmann area 30
    1 Optic Tract
Cluster 4
Number of voxels: }26
Peak MNI coordinate: 18-66 66
Peak MNI coordinate region: // undefined // undefined // undefined // undefined // undefined // Parietal_Sup_R (aal)
Peak intensity: 11.4539
# voxelsstructure
    268 --TOTAL # VOXELS-
    1 3 8 \text { Parietal Lobe}
    1 3 7 \text { Right Cerebrum}
    88 Precuneus_R (aal)
    86 Parietal Sup R (aal)
    86 Parietal_Sup_R (aa
    75 White Matte
    6 6 ~ P r e c u n e u s
    5 6 \text { brodmann area}
    56 Gray Matter
    4 5 \text { Sub-Gyral}
    2 7 \text { Superior Parietal Lobule}
    1 9 \text { Inter-Hemispheric}
    1 3 \text { Precuneus_L (aal)}
    8 Parietal_Inf_R (aal)
    L Left Cerebrum
    1 Angular_R (aal)
```

This indicates that you got 4 clusters supra-threhold. Taking cluster 1 as an example, I will show how to report this result:

Cluster 1 \%\% This is the first cluster out of total 4 clusters \%\%
Number of voxels: 112 \%\% This cluster size is 112 voxels, or this cluster contains 112 connected voxels \%\%
Peak MNI coordinate: -45-78-12 \%\% The MNI coordinates of the peak voxel in the cluster \%\%
Peak MNI coordinate region: // Left Cerebrum // Occipital Lobe // Middle Occipital Gyrus // Gray Matter // brodmann area 19 // Occipital_Inf_L (aal) \%\% Approximated location of the peak voxel (This is just for reference! Not the location of the whole cluster!) \%\% Peak intensity: 17.5958 \%\% The value of the peak voxel \%\%
\# voxelsstructure
112 --TOTAL \# VOXELS-
91 Left Cerebrum \%\% How many voxels in which brain area (not an exclusively counting) \%\%
75 Occipital Lobe
68 Occipital_Inf_L (aal)
54 White Matter
40 Middle Occipital Gyrus
34 Gray Matter
27 brodmann area 19
21 Inferior Occipital Gyrus
20 Cerebelum_Crus1_L (aal)
16 Temporal Lobe
13 Fusiform Gyrus
12 Fusiform_L (aal)
10 Inferior Temporal Gyrus Left Cerebellum
Declive
Cerebellum Posterior Lobe
6 Sub-Gyral
brodmann area 18
2 Occipital_Mid_L (aal)

For cluster 1, we can see it contains 112 voxels, as fMRI data we usually have $3 * 3 * 3 \mathrm{~mm}$ voxel, so the size of the cluster will be $112 * 27 \mathrm{~mm}^{3}$. To report this cluster, following steps you should do:

Step 1. Glimpsing this cluster in REST Slice viewer for a roughly assessment of its location.

Enter "Peak MNI coordinate" in Slice viewer, you goes to the peak voxel of this cluster:

The red cross indicates the cluster (Cluster 1) you're currently interested with. This is a relatively small cluster which locates in the left lateral occipital lobe (left is right, right is left in REST slice viewer).

Step 2. Open two new Slice Viewer windows showing BA and AAL atlas to roughly define the location of this cluster in BA and AAL.

Click "Slice Viewer" button to open a new window.

Open Template AAL, and Yoke (lock) the two windows. Do it again and open BA template.

Make sure that all 3 windows yoked together. Within the cluster, slightly move the red cross in the left window and see which BA and AAL regions this cluster covers.

You can move the cursor from the upper to the lower side of this cluster, and then from the left border to the right border, from the anterior border to the posterior border, to see if it covers multiple BA and AAL regions. In this example, whatever you move the cursor within the cluster, the BA template always report 19, and the AAL template frequently reports left inferior occipital cortex and sometimes reports Left middle occipital cortex. Therefore, we conclude that this cluster covers BA19, Left inferior occipital, and Left middle occipital cortices. Although a small portion of the low part of the cluster touches left cerebellum crus1, because it is a visual stimulation task, we expect the activation area occur at the visual cortex, rather than cerebellum. Therefore this little touch to the cerebellum crus1 region should be a registration error. So we do not need to report it.

Step 3. Go through the cl. report information to validate Step 2 and add more information.

After quickly go through "\# voxels structure", we can validate the spatial location of this cluster: most part of the cluster located in "inferior occipital gyrus" and "brodmann area 19", part of it extends to "left fusiform" (this is new information that we did not find in Step 2, so we decide to add it into our result report). Note that you don't have to look at the gross structure like "left cerebrum" because it is not spatially specific; and you don't have to look at the very few voxels like those in "brodmann area 18, sub-gyral, cerebellum posterior lobe, left cerebellum, etc". Note that you will see " 40 Middle occipital gyrus", which means nearly half of the cluster locates in middle occipital gyrus. This is not true according to your finding from Step 2 (the truth is only a small part of the cluster reaches middle occipital gyrus).

```
Cluster 1
Number of voxels: 112
Peak MNI coordinate: -45 -78-12
Peak intensity: 17.5958
# voxels structure
    112 --TOTAL # VOXELS--
    91 Left Cerebrum
    75 Occipital Lobe
    6 8 ~ O c c i p i t a l \ I n f \& L ~ ( a a l ) ~
    54 White Matter 
    34}\mathrm{ Gray Matter 
    Inferior Occipital Gyrus
        Cerebelum_Crusi_L (all)
    16 Temporal Lobe
    13 Fusiform Gyrus
    12 Fusiform_L (aal)
    Inferior Temporal Gyrus
    Left Cerebellum
    Declive
    Cerebellum Posterior Lobe
    Sub-Gyral
    brodmann area }1
    2 Occipital_Mid_L (aal)
```

Peak MNI coordinate region: // Left Cerebrum // Occipital Lobe // Middle Occipital Gyrus // Gray Matter // brodmann area 19 // Occipital_Inf_L (aal)

Step 4. Form the final report on this cluster location.

As a conclusion, we report that this cluster mainly covers left inferior occipital gyrus, and partly covers left middle occipital gyrus and fusiform. The BA region is BA 19. Therefore, in the future Table, you will write cluster size (112), Peak MNI coordinates ($-45,-78,-12$), Peak intensity ($\mathrm{t}=17.6$), Location (left inferior occipital gyrus, left middle occipital gyrus, left fusiform), BA (19).

OK, let's do a more complex case for cluster 2. After Step 2 and 3, we decide to report those regions in red, and ignore those in blue. Note that either too gross or too small region should not been reported (i.e., you probably need to report the middle section of the table below).

Cluster 2

Number of voxels: 1301
Peak MNI coordinate: 36-66-15
Peak MNI coordinate region: // Right Cerebrum // Occipital Lobe // Sub-Gyral // White Matter // undefined // Fusiform_R (aal)
Peak intensity: 18.9077
\# voxels structure
1301 --TOTAL \# VOXELS-
1203 Right Cerebrum
1076 Occipital Lobe
774 White Matter
381 Gray Matter
305 Middle Occipital Gyrus
288 Lingual Gyrus
229 Lingual_R (aal)
203 Cuneus
179 brodmann area 18
153 Fusiform_R (aal)

```
52 Occipital_Inf_R (aal)
49 Sub-Gyra
1 4 1 \text { Calcarine_R (aal)}
138 Occipital_Mid_R (aal)
127 Temporal Lobe
13 brodmann area }1
105 Occipital_Sup_R (aal)
93 Inferior Occipital Gyrus
8 8 \text { Fusiform Gyrus}
8 3 \text { Temporal_Inf_R (aal)}
58 Temporal_Mid_R (aal)
5 7 \text { Right Cerebellum}
5 1 \text { Declive}
Cerebellum Posterior Lobe
Cerebelum_6_R (aal)
brodmann area }1
4 3 \text { Middle Temporal Gyrus}
3 8 \text { Cuneus_R (aal)}
3 2 \text { Cerebelum_Crus1_R (aal)}
3 0 \text { brodmann area 37}
24 Inferior Temporal Gyrus
Cerebellum Anterior Lobe
Culmen
Superior Occipital Gyrus
brodmann area 39
Vermis_6 (aal)
```

Important, you cannot rely on the cl. report that was printed in Matlab. The best way is check the location by using "yoke" function and by your own eyes. In lots of cases, "Peak MNI coordinate region" reports "undefined", you have to do Step 2 and check by your own eyes.

Sometimes, the cl. report will get a one big cluster with, for example, more than 5000 voxels. In this case, you should be much careful, because this cluster should cover lots of brain areas. The "Peak MNI coordinate region" only reports one region, which is thus quite wrong! You should increase threshold by using more stringent p value, to make it split into different smaller clusters and then report them separately. Another method is integrating SPM result (see a following example).

[Added in 3/1/2014, for version 2]

In this new example, I will show how to report a very big-probably encompassed lots of brain regions-cluster, based on REST-slice viewer, SPM and MRIcron.

```
Cluster 6
Number of voxels: 2342
Peak MNI coordinate: -30 6 60
Peak MNI coordinate region: // Left Cerebrum // Frontal Lobe // Middle Frontal Gyrus // White Matter // undefined // Frontal_Mid_L (aal)
Peak intensity: 18.5588
# voxelsstructure
    2342 --TOTAL # VOXELS-
    2068 Frontal Lobe
    1607 Left Cerebrum
    1 3 1 3 \text { White Matter}
    40 Middle Frontal Gyrus
    699 Gray Matter
    5 2 3 ~ R i g h t ~ C e r e b r u m ~
    Frontal_Mid_L(aal)
    37 Sub-Gyral
    35 brodmann area 6
    3 4 9 \text { Superior Frontal Gyrus}
    297 Precentral_L (aal)
    41 Frontal_Inf_Tri_L(aal)
    13 Supp_Motōr_Area_L (aal)
    202 Inferior Frontal Gyrus
    97 Frontal Sup L (aal)
    96 Frontal_Mid R (aal)
    175 Frontal Sup R (aal)
    158 Medial Frontal Gyrus
    138 Frontal_Inf_Oper_L (aal
    125 brodmann area 
    1 1 8 \text { brodmann area 8}
    92 Supp_Motor_Area_R (aal)
    83 Cingulate Gyrus
    60 Frontal_Sup
    57 brodmann area 32
    5 5 \text { Inter-Hemispheric}
    35 Frontal_Sup_Medial_R (aal)
    3 3 \text { Precentral Gyrus}
    22 brodmann area 46
    1 7 \text { Cingulum_Mid_R (aal)}
    brodmanñ area-45
    Precentral R (aal)
    brodmann area 44
```

```
Insula
brodmann area }2
Cingulum Mid_L (aal)
Sub-lobar
brodmann area }1
```

In this example, there were 9 clusters: 7 clusters were small (cluster size $=40-140$ voxels), and another 2 clusters were too big (cluster size >2000 voxels). See above for the cluster 6 .

In the peak voxel of this cluster ($-30,6,60$), I, using three MRIcron windows, saw a big cluster extended from left middle frontal gyrus (see similar report in REST: 401 Frontal_Mid_L(aal), 355 brodmann area 6) to Supplementary motor area (BA6/8/32, see similar report in REST: 213 Supp_Motor_Area_L (aal), 197 Frontal_Sup_L (aal),), see figure below.

When I move the cursor within this big cluster in MRIcron, I found it also connected to right-sided frontal areas, which is mirrored to the left sided ones (see red arrow in figure below).

And the left-sided cluster can be divided into an upper one and a lower one (see figure below).

Therefore, I decided to report this big cluster to be four clusters. The next step is to use SPM to find all the peaks in this big cluster.

In SPM, we found the same cluster by clicking "whole brain" button and the peak coordinates in the right column of the table (i.e., $-30,6,60$). We found the cluster size as reported by SPM was the same as that reported by REST (i.e., $k_{\mathrm{E}}=2342$).

Statistics: p-values adyusted for search volume

set-level		cluster-level				peak-level					mm mm mm
ρ	c	$P_{\text {Flic-ax }}$	$4_{\text {FDR-wis }}$	${ }^{\text {E }}$	$P_{\text {unowr }}$	$P_{\text {FlE- }}$	$4_{\text {FDR-XNT }}$	T	(2引)	$P_{\text {unowr }}$	
D.DDD	?	D.DDD	D.DDD	209	D.DDD	D. Dod	D.DDD	Le. EE	tot	0.000	-21-4s 39
						1.11'	1.11	14.32	3n5	1.11'	35-61 is
						1.11	1.11	13.11	3n5	1.11	-12-13
		D.Dod	D.DDD	zuz	D.DDD	D.000	D.000	Le.s8	tot	D. D0D	-50 \& ${ }^{-5}$
						1.11	1.111	18.14	3n	1.11	-5 is 34
						1.11	1.11	15.45	3 m	1.1'1	3182
		D.Dod	D.000	enz	D.DDD	D.DDD	D.000	L6.ze	coe	D. Dod	so -as -x
						1.17	1.11	12.14	3nc	1.11'	2-11-21
						1.11	1.111	11.91	3n5	1.11	36-56
		D.DOD	D.000	L2z	D.DDD	D.Dod	D.000	ㄴ.LE	toe	D.DD0	$\triangle 35$
		D.000	D.DDD	bo	D.DDD	D. Dod	D.000	LL. ${ }^{\text {P }}$	tot	D.DDD	-30 264
						1.11	1.398	1.44	E. 11	1.11'	-42111
		D.DDD	D.DDD	-	D.DDD	D.dod	D.D00	Lt. xz	toe	D.000	$30 \mathrm{z4}-\mathrm{y}$
		D.000	D.DDD	2	D.DDD	D.000	D.000	Lt.L8	tee	D.000	45
						1.11	1.144	9.21	1.21	1.11	11 1s 11
		D.DDD	D.DDD	Ls	D.DDD	D.DDD	D.DDD	L0.14	toe	D.Dod	-2 - - - -
						1.11'	1.158	9.35	1.25	1.11'	-5E -6E -4s
						1.11	1.161	9.25	1.19	1.11	-3E-12-34
		D.000	D.DDD	LLE	D.DDD	D. DDD	D.DOL	L0.38	1.14	D.000	
						1.11	1.239	1.15	E. 35	1.11'	-39 is 1
					stous	1.111 axima may	1.349 8.0 mm apa	1.6	E.15	1.11'	-4183

To find out all peaks in this big cluster, I click "current cluster" button. SPM showed a new table, including five peaks. Write down these coordinates and put them into MRIcron to find out which regions they corresponded to.

Statistics: p-values adjusted for search volume

Finally, I found out there were totally three clusters in the big cluster. Their peaks were:

1) $-30,6,60$ in the BA6/8 and Front_Mid/Sup L, Precentral L, $t=18.56$;
2) $-48,21,33$ in the BA $44 / 45 / 48$ and Front_Inf_Tri/Oper $L, t=16.15$;
3) -6 1554 in the BA6/8/32 and Supplementary motor area $R / L, t=16.74$; and
4) $30,12,60$ in the BA6/8 and Front_Mid/Sup $\mathrm{R}, t=16.43$;

Note that the last coordinates in the SPM table (i.e., -39633) is too nearby to ($-48,21,33$) and both of them were in the same cluster of cluster (2), therefore I decided not to report this.

After comparisons with the REST report, I generate this form for this big cluster:

Regions	Hemis phere	BA	Number of voxels	Peak activation strength (t)	\bigcirc	Peak coordinates		
						X	y	Z
Front Mid/Sup Gyrus, Precentral Gyrus	L	6,8	2342	18.56	\bigcirc	-30	6	60
Front Inf Tri/Oper	L	$\begin{aligned} & 44,45, \\ & 48 \end{aligned}$		16.15	\bigcirc	-48	21	33
Supp Mot Area	L/R	6,8,32		16.74	\bigcirc	-6	15	54
Front Mid/Sup Gyrus	R	6,8		16.43	\bigcirc	30	12	60

Blow there is another example for how to report a big cluster:

```
Cluster }
Number of voxels: }239
Peak MNI coordinate: -27-63 39
Peak MNI coordinate region: // Left Cerebrum // Parietal Lobe // Precuneus // White Matter // undefined // Parietal_Inf_L (aal)
Peak intensity: 18.6826
# voxelsstructure
2395 TOTAL #VOXELS
    2395 --TOTAL # VOX
    1186 Whita Mobe
    106 Whic
    Left Cerebrum
    890 Right Cerebrum
    74 Gray Matte
    01 Precuneus
    5 5 8 \text { Inferior Parietal Lobule}
    4 0 1 ~ b r o d m a n n ~ a r e a ~ 7 ~ I ) ~
    378 Parietal_Inf_L (aal)
    325 Superior Parietal Lobule
    306 Parietal_Sup_L (aal)
    277 Sub-Gyral
    2 5 3 \text { brodmann area 40}
    21 Parietal Sup R (aal)
    208 Precuneus_L(aal)
    205 Parietal_Inf_R (aal)
    195 Angular R (aal)
    1 4 8 \text { Precuneus R (aal)}
    1 2 9 ~ O c c i p i t a l \ M i d \_ L ~ ( a a l ) ~
    85 Supramarginal Gyrus
    78 Angular_L (aal)
    75 Occipital_Sup_R (aal)
    5 9 \text { brodmann area } 1 9
    4 6 \text { Occipital_Sup_L(aal)}
    4 1 ~ O c c i p i t a l \ M i d \_ R ~ ( a a l )
    39 Angular Gyrus
    3 1 \text { brodmann area } 3 9
    24 SupraMarginal_R (aal)
```

The SPM current cluster report table was:
2minus0correct

Statistics: pvalues adyused for search volume

cluster-level				peak-level					mm mm mm
$P_{\text {FLEE-wn }}$		$k_{\text {E }}$	$P_{\text {unowr }}$	$P_{\text {FLE }}$-wit	${ }^{4} \mathrm{FDR}$-wnt	T	(2)	$P_{\text {unowr }}$	
D.Dod	D.DDD	203	D.DDD	D.DDD	D.DDD	Le.be	cot	D.Dod	-zı-8x 39
				1.111	1.111	34.32	3n5	1.111	35-51 is
				1.11	1.111	13.11	נn5	1.111	-12 -13 ${ }^{38}$
				1.11	1.111	33.15	3n5	1.111	$39-418$
				1.11	1.111	33.34	3n5	1.111	-9 -59 41
				1.11	1.111	22.11	3n5	1.11	3s -xt is
				1.11	1.111	32.61	3n5	1.1'1	13 312

I saw only two clusters in this big cluster, which centering at the first two peaks. All the others were not identifiable as separated clusters. Therefore, the resultant table is:

Regions		Hemis phere	BA	Number of voxels	Peak activation strength (t)		Peak coordinates			
		X					y	Z		
Parietal Gyrus, Mid/Sup Angular Precuneus	Inf/Sup Occipital Gyrus, Gyrus,		L	7,39,40	2395	18.68	+	-27	-63	39
Parietal Gyrus, Mid/Sup Angular Precuneus	Inf/Sup Occipital Gyrus, Gyrus,	R	7,39,40		14.32	-	36	-60	45	

[^0]: Number of clusters found: 4

