Zang YF papers

Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T

Thu, 05/23/2024 - 18:00

Neuroinformatics. 2024 May 23. doi: 10.1007/s12021-024-09667-5. Online ahead of print.


US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.

PMID:38780699 | DOI:10.1007/s12021-024-09667-5

The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder

Fri, 04/26/2024 - 18:00

Psychoradiology. 2022 Jun 9;2(1):32-42. doi: 10.1093/psyrad/kkac005. eCollection 2022 Mar.


Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

PMID:38665141 | PMC:PMC10917197 | DOI:10.1093/psyrad/kkac005

The underlying neuropsychological and neural correlates of the impaired Chinese reading skills in children with attention deficit hyperactivity disorder

Thu, 04/25/2024 - 18:00

Eur Child Adolesc Psychiatry. 2024 Apr 25. doi: 10.1007/s00787-024-02422-w. Online ahead of print.


Impaired basic academic skills (e.g., word recognition) are common in children with Attention Deficit Hyperactivity Disorder (ADHD). The underlying neuropsychological and neural correlates of impaired Chinese reading skills in children with ADHD have not been substantially explored. Three hundred and two children with ADHD (all medication-naïve) and 105 healthy controls underwent the Chinese language skill assessment, and 175 also underwent fMRI scans (84 ADHD and 91 controls). Between-group and mediation analyses were applied to explore the interrelationships of the diagnosis of ADHD, cognitive dysfunction, and impaired reading skills. Five ADHD-related brain functional networks, including the default mode network (DMN) and the dorsal attention network (DAN), were built using predefined regions of interest. Voxel-based group-wise comparisons were performed. The ADHD group performed worse than the control group in word-level reading ability tests, with lower scores in Chinese character recognition (CR) and word chains (WS) (all P < 0.05). With full-scale IQ and sustained attention in the mediation model, the direct effect of ADHD status on the CR score became insignificant (P = 0.066). The underlying neural correlates for the orthographic knowledge (OT) and CR differed between the ADHD and the control group. The ADHD group tended to recruit more DMN regions to maintain their reading performance, while the control group seemed to utilize more DAN regions. Children with ADHD generally presented impaired word-level reading skills, which might be caused by impaired sustained attention and lower IQ. According to the brain functional results, we infer that ADHD children might utilize a different strategy to maintain their orthographic knowledge and character recognition performance.

PMID:38662058 | DOI:10.1007/s00787-024-02422-w

The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration

Fri, 03/22/2024 - 18:00

Sci Bull (Beijing). 2024 Mar 6:S2095-9273(24)00150-6. doi: 10.1016/j.scib.2024.03.006. Online ahead of print.


Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.

PMID:38519398 | DOI:10.1016/j.scib.2024.03.006

Online and offline effects of parietal 10 Hz repetitive transcranial magnetic stimulation on working memory in healthy controls

Fri, 03/15/2024 - 18:00

Hum Brain Mapp. 2024 Mar;45(4):e26636. doi: 10.1002/hbm.26636.


Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.

PMID:38488458 | PMC:PMC10941606 | DOI:10.1002/hbm.26636