Feed aggregator

The Role of Subgenual Resting-State Connectivity Networks in Predicting Prognosis in Major Depressive Disorder

Most recent paper - Mon, 04/22/2024 - 18:00

Biol Psychiatry Glob Open Sci. 2024 Mar 13;4(3):100308. doi: 10.1016/j.bpsgos.2024.100308. eCollection 2024 May.

ABSTRACT

BACKGROUND: A seminal study found higher subgenual frontal cortex resting-state connectivity with 2 left ventral frontal regions and the dorsal midbrain to predict better response to psychotherapy versus medication in individuals with treatment-naïve major depressive disorder (MDD). Here, we examined whether these subgenual networks also play a role in the pathophysiology of clinical outcomes in MDD with early treatment resistance in primary care.

METHODS: Forty-five people with current MDD who had not responded to ≥2 serotonergic antidepressants (n = 43, meeting predefined functional magnetic resonance imaging minimum quality thresholds) were enrolled and followed over 4 months of standard care. Functional magnetic resonance imaging resting-state connectivity between the preregistered subgenual frontal cortex seed and 3 previously identified left ventromedial, ventrolateral prefrontal/insula, and dorsal midbrain regions was extracted. The clinical outcome was the percentage change on the self-reported 16-item Quick Inventory of Depressive Symptomatology.

RESULTS: We observed a reversal of our preregistered hypothesis in that higher resting-state connectivity between the subgenual cortex and the a priori ventrolateral prefrontal/insula region predicted favorable rather than unfavorable clinical outcomes (rs39 = -0.43, p = .006). This generalized to the sample including participants with suboptimal functional magnetic resonance imaging quality (rs43 = -0.35, p = .02). In contrast, no effects (rs39 = 0.12, rs39 = -0.01) were found for connectivity with the other 2 preregistered regions or in a whole-brain analysis (voxel-based familywise error-corrected p < .05).

CONCLUSIONS: Subgenual connectivity with the ventrolateral prefrontal cortex/insula is relevant for subsequent clinical outcomes in current MDD with early treatment resistance. Its positive association with favorable outcomes could be explained primarily by psychosocial rather than the expected pharmacological changes during the follow-up period.

PMID:38645404 | PMC:PMC11033067 | DOI:10.1016/j.bpsgos.2024.100308

Cross-subject brain entropy mapping

Most recent paper - Mon, 04/22/2024 - 18:00

bioRxiv [Preprint]. 2024 Apr 10:2024.04.05.588307. doi: 10.1101/2024.04.05.588307.

ABSTRACT

We present a method to map the regional similarity between resting state fMRI activities of different individuals. The similarity was measured using cross-entropy. Group level patterns were displayed based on the Human Connectome Project Youth data. While we only showed the cross-subject brain entropy (BEN) mapping results in this manuscript, the same concept can be directly extended to map the cross-sessional BEN and the cross-regional cross-subject or subject-session BEN.

PMID:38645267 | PMC:PMC11030347 | DOI:10.1101/2024.04.05.588307

Creative tempo: Spatiotemporal dynamics of the default mode network in improvisational musicians

Most recent paper - Mon, 04/22/2024 - 18:00

bioRxiv [Preprint]. 2024 Apr 9:2024.04.07.588391. doi: 10.1101/2024.04.07.588391.

ABSTRACT

The intrinsic dynamics of human brain activity display a recurring pattern of anti-correlated activity between the default mode network (DMN), associated with internal processing and mentation, and task positive regions, associated with externally directed attention. In human functional magnetic resonance imaging (fMRI) data, this anti-correlated pattern is detectable on the infraslow timescale (<0.1 Hz) as a quasi-periodic pattern (QPP). While the DMN is implicated in creativity and musicality in traditional time-averaged functional connectivity studies, no one has yet explored how creative training may alter dynamic spatiotemporal patterns involving the DMN such as QPPs. In the present study, we compare the outputs of two QPP detection approaches, sliding window algorithm and complex principal components analysis (cPCA). We apply both methods to an existing dataset of musicians captured with resting state fMRI, grouped as either classical, improvisational, or minimally trained non-musicians. The original time-averaged functional connectivity (FC) analysis of this dataset used improvisation as a proxy for creative thinking and found that the DMN and visual networks (VIS) display higher connectivity in improvisational musicians. We expand upon this dataset's original study and find that QPP analysis detects convergent results at the group level with both methods. In improvisational musicians, dynamic functional correlation in the group-averaged QPP was found to be increased between the DMN-VIS and DMN-FPN for both the QPP algorithm and complex principal components analysis (cPCA) methods. Additionally, we found an unexpected increase in FC in the group-averaged QPP between the dorsal attention network and amygdala in improvisational musicians; this result was not reported in the original seed-based study of this dataset. The current study represents a novel application of two dynamic FC detection methods with results that replicate and expand upon previous seed-based FC findings. The results show the robustness of both the QPP phenomenon and its detection methods. This study also demonstrates the value of dynamic FC methods in reproducing seed-based findings and their promise in detecting group-wise or individual differences that may be missed by traditional seed-based resting state fMRI studies.

PMID:38645080 | PMC:PMC11030431 | DOI:10.1101/2024.04.07.588391

Connectome caricatures: removing large-amplitude co-activation patterns in resting-state fMRI emphasizes individual differences

Most recent paper - Mon, 04/22/2024 - 18:00

bioRxiv [Preprint]. 2024 Apr 11:2024.04.08.588578. doi: 10.1101/2024.04.08.588578.

ABSTRACT

High-amplitude co-activation patterns are sparsely present during resting-state fMRI but drive functional connectivity 1-5 . Further, they resemble task activation patterns and are well-studied 3,5-10 . However, little research has characterized the remaining majority of the resting-state signal. In this work, we introduced caricaturing-a method to project resting-state data to a subspace orthogonal to a manifold of co-activation patterns estimated from the task fMRI data. Projecting to this subspace removes linear combinations of these co-activation patterns from the resting-state data to create Caricatured connectomes. We used rich task data from the Human Connectome Project (HCP) 11 and the UCLA Consortium for Neuropsychiatric Phenomics 12 to construct a manifold of task co-activation patterns. Caricatured connectomes were created by projecting resting-state data from the HCP and the Yale Test-Retest 13 datasets away from this manifold. Like caricatures, these connectomes emphasized individual differences by reducing between-individual similarity and increasing individual identification 14 . They also improved predictive modeling of brain-phenotype associations. As caricaturing removes group-relevant task variance, it is an initial attempt to remove task-like co-activations from rest. Therefore, our results suggest that there is a useful signal beyond the dominating co-activations that drive resting-state functional connectivity, which may better characterize the brain's intrinsic functional architecture.

PMID:38645002 | PMC:PMC11030410 | DOI:10.1101/2024.04.08.588578

Brain activation and connection across resting and motor-task states in patients with generalized tonic-clonic seizures

Most recent paper - Mon, 04/22/2024 - 18:00

CNS Neurosci Ther. 2024 Apr;30(4):e14672. doi: 10.1111/cns.14672.

ABSTRACT

AIMS: Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism.

METHODS: Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups.

RESULTS: All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients.

CONCLUSION: Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.

PMID:38644561 | PMC:PMC11033329 | DOI:10.1111/cns.14672

Alteration of prefrontal cortex and its associations with emotional and cognitive dysfunctions in adolescent borderline personality disorder

Most recent paper - Sat, 04/20/2024 - 18:00

Eur Child Adolesc Psychiatry. 2024 Apr 20. doi: 10.1007/s00787-024-02438-2. Online ahead of print.

ABSTRACT

The neurobiological mechanism of borderline personality disorder (BPD) in adolescents remains unclear. The study aimed to assess the alterations in neural activity within prefrontal cortex in adolescents with BPD and investigate the relationship of prefrontal activity with emotional regulation and cognitive function. This study enrolled 50 adolescents aged 12-17 years with BPD and 21 gender and age-matched healthy control (HC) participants. Study assessment for each participant included a brain resting-state functional MRI (rs-fMRI), clinical assessment questionnaires such as Borderline Personality Features Scale (BPFS), Difficulties in Emotion Regulation Scale (DERS), Ottawa Self-Injury Inventory and Childhood Trauma Questionnaire (CTQ) and cognitive testing with Stroop Color-Word Test (SCWT). Fractional amplitude of low-frequency fluctuations (fALFF) and seed-based functional connectivity (FC) were obtained from rs-fMRI analysis. Correlation analysis was also performed to evaluate the associations of the neuroimaging metrics such as fALFF and FC with clinical assessment questionnaire and cognitive testing scores. Adolescents with BPD showed increased fALFF values in the right inferior frontal gyrus and decreased activity in the left middle frontal gyrus as compared to the HC group (p < 0.05, cluster size ≥ 100, FWE correction). In adolescents with BPD, increased fALFF in the right inferior frontal gyrus was related to the BPFS (emotional dysregulation), DERS-F (lacking of emotional regulation strategies) and Ottawa Self-Injury Inventory-4 C scores (internal emotional regulation function of self-injurious behavior). The reduced fALFF in the left middle frontal gyrus was associated with the SCWT-A (reading characters) and the SCWT-B (reading color) scores. Additionally, the fALFF values in the left middle frontal gyrus and the right inferior frontal gyrus were related to the CTQ-D (emotional neglect) (p < 0.05). The left middle frontal gyrus exhibited increased FC with the right hippocampus, left inferior temporal gyrus and right inferior frontal gyrus (voxel p < 0.001, cluster p < 0.05, FWE correction). The increased FC between the left middle frontal gyrus and the right hippocampus was related to the SCWT-C (cognitive flexibility) score. We observed diverging changes in intrinsic brain activity in prefrontal cortex, and neural compensatory changes to maintain function in adolescents with BPD. In addition, decreased neural function was closely associated with emotional dysregulation, while increased neural function as indicated by brain activity and FC was associated with cognitive dysfunction. These results indicated that alterations of intrinsic brain activity may be one of the underlying neurobiological markers for clinical symptoms in adolescents with BPD.

PMID:38642117 | DOI:10.1007/s00787-024-02438-2

Neural correlates of novelty-evoked distress in 4-month-old infants: A synthetic cohort study

Most recent paper - Fri, 04/19/2024 - 18:00

Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Apr 17:S2451-9022(24)00107-1. doi: 10.1016/j.bpsc.2024.03.008. Online ahead of print.

ABSTRACT

BACKGROUND: Observational assessments of infant temperament have provided unparalleled insight into prediction of risk for social anxiety. Yet, it is challenging to administer and score these assessments alongside high-quality infant neuroimaging data. The current study aims to identify infant resting state functional connectivity (rsFC) associated with both parent-report and observed behavioral estimates of infant novelty-evoked distress.

METHODS: Using data from the Origins of Infant Temperament (OIT) study which includes deep phenotyping of infant temperament, we identified parent-report measures that were associated with observed novelty-evoked distress. These parent-report measures were then summarized into a composite score used for imaging analysis. Our infant MRI sample was a "synthetic cohort", harmonizing data from two fMRI studies of 4-month-old infants (OIT and Baby Connectome Project [BCP]; n=101) both of which included parent-reported temperament. Brain-behavior associations were evaluated using "enrichment," a statistical approach that quantifies the clustering of brain-behavior associations within network pairs.

RESULTS: Results demonstrated that parent-report composites of novelty-evoked distress were significantly associated with three network pairs: Dorsal Attention-Salience/Ventral Attention, Dorsal Attention-Default, and Dorsal Attention-Control. These network pairs demonstrated negative associations with novelty-evoked distress-indicating that less connectivity between these network pairs was associated with greater novelty-evoked distress. Additional analyses demonstrated that Dorsal Attention -Control network connectivity was associated with observed novelty-evoked distress in the OIT sample (n=38).

CONCLUSION: Overall, this work is broadly consistent with existing work and implicates dorsal attention network connectivity in novelty-evoked distress. This study provides novel data on the neural basis of infant novelty-evoked distress.

PMID:38641209 | DOI:10.1016/j.bpsc.2024.03.008

A new model for dynamic mapping of effective connectivity in task fMRI

Most recent paper - Fri, 04/19/2024 - 18:00

Brain Res Bull. 2024 Apr 17:110938. doi: 10.1016/j.brainresbull.2024.110938. Online ahead of print.

ABSTRACT

Whole-brain dynamic functional connectivity is a growing area in neuroimaging research, encompassing data-driven methods for investigating how large-scale brain networks dynamically reorganize during resting states. However, this approach has been rarely applied to functional magnetic resonance imaging (fMRI) data acquired during task performance. In this study, we first combined the psychophysiological interactions (PPI) and sliding-window methods to analyze dynamic effective connectivity of fMRI data obtained from subjects performing the N-back task within the Human Connectome Project dataset. We then proposed a hypothetical model called Condition Activated Specific Trajectory (CAST) to represent a series of spatiotemporal synchronous changes in significantly activated connections across time windows, which we refer to as a trajectory. Our finding demonstrate that the CAST model outperforms other models in terms of intra-group consistency of individual spatial pattern of PPI connectivity, overall representational ability of temporal variability and hierarchy for individual task performance and cognitive traits. This dynamic view afforded by the CAST model reflects the intrinsic nature of coherent brain activities.

PMID:38641153 | DOI:10.1016/j.brainresbull.2024.110938

Total sleep deprivation alters spontaneous brain activity in medical staff during routine clinical work: a resting-state functional MR imaging study

Most recent paper - Fri, 04/19/2024 - 18:00

Front Neurosci. 2024 Apr 4;18:1377094. doi: 10.3389/fnins.2024.1377094. eCollection 2024.

ABSTRACT

OBJECTIVES: To assess the effect of total sleep deprivation (TSD) on spontaneous brain activity in medical staff during routine clinical practice.

METHODS: A total of 36 medical staff members underwent resting-state functional MRI (rs-fMRI) scans and neuropsychological tests twice, corresponding to rested wakefulness (RW) after normal sleep and 24 h of acute TSD. The rs-fMRI features, including the mean fractional amplitude of low-frequency fluctuation (mfALFF), z-score transformed regional homogeneity (zReHo), and functional connectivity (zFC), were compared between RW and TSD. Correlation coefficients between the change in altered rs-fMRI features and the change in altered scores of neuropsychological tests after TSD were calculated. Receiver operating characteristic (ROC) and logistic regression analyses were performed to evaluate the diagnostic efficacy of significantly altered rs-fMRI features in distinguishing between RW and TSD states.

RESULTS: Brain regions, including right superior temporal gyrus, bilateral postcentral gyrus, left medial superior frontal gyrus, left middle temporal gyrus, right precentral gyrus, and left precuneus, showed significantly enhanced rs-fMRI features (mfALFF, zReHo, zFC) after TSD. Moreover, the changes in altered rs-fMRI features of the right superior temporal gyrus, bilateral postcentral gyrus, left middle temporal gyrus, and left precuneus were significantly correlated with the changes in several altered scores of neuropsychological tests. The combination of mfALFF (bilateral postcentral gyrus) and zFC (left medial superior frontal gyrus and left precuneus) showed the highest area under the curve (0.870) in distinguishing RW from TSD.

CONCLUSION: Spontaneous brain activity alterations occurred after TSD in routine clinical practice, which might explain the reduced performances of these participants in neurocognitive tests after TSD. These alterations might be potential imaging biomarkers for assessing the impact of TSD and distinguishing between RW and TSD states.

PMID:38638698 | PMC:PMC11025562 | DOI:10.3389/fnins.2024.1377094

Weakened effective connectivity between salience network and default mode network during resting state in adolescent depression

Most recent paper - Fri, 04/19/2024 - 18:00

Front Psychiatry. 2024 Apr 4;15:1386984. doi: 10.3389/fpsyt.2024.1386984. eCollection 2024.

ABSTRACT

Adolescent major depressive disorder (MDD) is associated with altered resting-state connectivity between the default mode network (DMN) and the salience network (SN), which are involved in self-referential processing and detecting and filtering salient stimuli, respectively. Using spectral dynamical causal modelling, we investigated the effective connectivity and input sensitivity between key nodes of these networks in 30 adolescents with MDD and 32 healthy controls while undergoing resting-state fMRI. We found that the DMN received weaker inhibition from the SN and that the medial prefrontal cortex and the anterior cingulate cortex showed reduced self-inhibition in MDD, making them more prone to external influences. Moreover, we found that selective serotonin reuptake inhibitor (SSRI) intake was associated with decreased and increased self-inhibition of the SN and DMN, respectively, in patients. Our findings suggest that adolescent MDD is characterized by a hierarchical imbalance between the DMN and the SN, which could affect the integration of emotional and self-related information. We propose that SSRIs may help restore network function by modulating excitatory/inhibitory balance in the DMN and the SN. Our study highlights the potential of prefrontal-amygdala interactions as a biomarker and a therapeutic target for adolescent depression.

PMID:38638415 | PMC:PMC11024787 | DOI:10.3389/fpsyt.2024.1386984

Topological disruption of low- and high-order functional networks in presbycusis

Most recent paper - Fri, 04/19/2024 - 18:00

Brain Commun. 2024 Apr 6;6(2):fcae119. doi: 10.1093/braincomms/fcae119. eCollection 2024.

ABSTRACT

Prior efforts have manifested that functional connectivity (FC) network disruptions are concerned with cognitive disorder in presbycusis. The present research was designed to investigate the topological reorganization and classification performance of low-order functional connectivity (LOFC) and high-order functional connectivity (HOFC) networks in patients with presbycusis. Resting-state functional magnetic resonance imaging (Rs-fMRI) data were obtained in 60 patients with presbycusis and 50 matched healthy control subjects (HCs). LOFC and HOFC networks were then constructed, and the topological metrics obtained from the constructed networks were compared to evaluate topological differences in global, nodal network metrics, modularity and rich-club organization between patients with presbycusis and HCs. The use of HOFC profiles boosted presbycusis classification accuracy, sensitivity and specificity compared to that using LOFC profiles. The brain networks in both patients with presbycusis and HCs exhibited small-world properties within the given threshold range, and striking differences between groups in topological metrics were discovered in the constructed networks (LOFC and HOFC). NBS analysis identified a subnetwork involving 26 nodes and 23 signally altered internodal connections in patients with presbycusis in comparison to HCs in HOFC networks. This study highlighted the topological differences between LOFC and HOFC networks in patients with presbycusis, suggesting that HOFC profiles may help to further identify brain network abnormalities in presbycusis.

PMID:38638149 | PMC:PMC11025675 | DOI:10.1093/braincomms/fcae119

The association between gray matter volume in the hippocampal subfield and antidepressant efficacy mediated by abnormal dynamic functional connectivity

Most recent paper - Thu, 04/18/2024 - 18:00

Sci Rep. 2024 Apr 18;14(1):8940. doi: 10.1038/s41598-024-56866-w.

ABSTRACT

An abnormality of structures and functions in the hippocampus may have a key role in the pathophysiology of major depressive disorder (MDD). However, it is unclear whether structure factors of the hippocampus effectively impact antidepressant responses by hippocampal functional activity in MDD patients. We collected longitudinal data from 36 MDD patients before and after a 3-month course of antidepressant pharmacotherapy. Additionally, we obtained baseline data from 43 healthy controls matched for sex and age. Using resting-state functional magnetic resonance imaging (rs-fMRI), we estimated the dynamic functional connectivity (dFC) of the hippocampal subregions using a sliding-window method. The gray matter volume was calculated using voxel-based morphometry (VBM). The results indicated that patients with MDD exhibited significantly lower dFC of the left rostral hippocampus (rHipp.L) with the right precentral gyrus, left superior temporal gyrus and left postcentral gyrus compared to healthy controls at baseline. In MDD patients, the dFC of the rHipp.L with right precentral gyrus at baseline was correlated with both the rHipp.L volume and HAMD remission rate, and also mediated the effects of the rHipp.L volume on antidepressant performance. Our findings suggested that the interaction between hippocampal structure and functional activity might affect antidepressant performance, which provided a novel insight into the hippocampus-related neurobiological mechanism of MDD.

PMID:38637536 | DOI:10.1038/s41598-024-56866-w

Functional Connectivity Changes on Resting-State fMRI after Mild Traumatic Brain Injury: A Systematic Review

Most recent paper - Thu, 04/18/2024 - 18:00

AJNR Am J Neuroradiol. 2024 Apr 18. doi: 10.3174/ajnr.A8204. Online ahead of print.

ABSTRACT

BACKGROUND: Mild traumatic brain injury is theorized to cause widespread functional changes to the brain. Resting-state fMRI may be able to measure functional connectivity changes after traumatic brain injury, but resting-state fMRI studies are heterogeneous, using numerous techniques to study ROIs across various resting-state networks.

PURPOSE: We systematically reviewed the literature to ascertain whether adult patients who have experienced mild traumatic brain injury show consistent functional connectivity changes on resting-state -fMRI, compared with healthy patients.

DATA SOURCES: We used 5 databases (PubMed, EMBASE, Cochrane Central, Scopus, Web of Science).

STUDY SELECTION: Five databases (PubMed, EMBASE, Cochrane Central, Scopus, and Web of Science) were searched for research published since 2010. Search strategies used keywords of "functional MR imaging" and "mild traumatic brain injury" as well as related terms. All results were screened at the abstract and title levels by 4 reviewers according to predefined inclusion and exclusion criteria. For full-text inclusion, each study was evaluated independently by 2 reviewers, with discordant screening settled by consensus.

DATA ANALYSIS: Data regarding article characteristics, cohort demographics, fMRI scan parameters, data analysis processing software, atlas used, data characteristics, and statistical analysis information were extracted.

DATA SYNTHESIS: Across 66 studies, 80 areas were analyzed 239 times for at least 1 time point, most commonly using independent component analysis. The most analyzed areas and networks were the whole brain, the default mode network, and the salience network. Reported functional connectivity changes varied, though there may be a slight trend toward decreased whole-brain functional connectivity within 1 month of traumatic brain injury and there may be differences based on the time since injury.

LIMITATIONS: Studies of military, sports-related traumatic brain injury, and pediatric patients were excluded. Due to the high number of relevant studies and data heterogeneity, we could not be as granular in the analysis as we would have liked.

CONCLUSIONS: Reported functional connectivity changes varied, even within the same region and network, at least partially reflecting differences in technical parameters, preprocessing software, and analysis methods as well as probable differences in individual injury. There is a need for novel rs-fMRI techniques that better capture subject-specific functional connectivity changes.

PMID:38637022 | DOI:10.3174/ajnr.A8204

Neutral sphingomyelinase controls acute and chronic alcohol effects on brain activity

Most recent paper - Thu, 04/18/2024 - 18:00

Neuropharmacology. 2024 Apr 16:109948. doi: 10.1016/j.neuropharm.2024.109948. Online ahead of print.

ABSTRACT

Alcohol consumption is a widespread phenomenon throughout the world. However, how recreational alcohol use evolves into alcohol use disorder (AUD) remains poorly understood. The Smpd3 gene and its coded protein neutral sphingomyelinase (NSM) are associated with alcohol consumption in humans and alcohol-related behaviors in mice, suggesting a potential role in this transition. Using multiparametric magnetic resonance imaging, we characterized the role of NSM in acute and chronic effects of alcohol on brain anatomy and function in female mice. Chronic voluntary alcohol consumption (16 vol.% for at least 6 days) affected brain anatomy in WT mice, reducing regional structure volume predominantly in cortical regions. Attenuated NSM activity prevented these anatomical changes. Functional MRI linked these anatomical adaptations to functional changes: Chronic alcohol consumption in mice significantly modulated resting state functional connectivity (RS FC) in response to an acute ethanol challenge (i.p. bolus of 2 g kg-1) in heterozygous NSM knockout (Fro), but not in WT mice. Acute ethanol administration in alcohol-naïve WT mice significantly decreased RS FC in cortical and brainstem regions, a key finding that was amplified in Fro mice. Regarding direct pharmacological effects, acute ethanol administration increased the regional cerebral blood volume (rCBV) in many brain areas. Here, chronic alcohol consumption otherwise attenuated the acute rCBV response in WT mice but enhanced it in Fro mice. Altogether, these findings suggest a differential role for NSM in acute and chronic functional brain responses to alcohol. Therefore, targeting NSM may be useful in the prevention or treatment of AUD.

PMID:38636728 | DOI:10.1016/j.neuropharm.2024.109948

Searching Reproducible Brain Features using NeuroMark: Templates for Different Age Populations and Imaging Modalities

Most recent paper - Thu, 04/18/2024 - 18:00

Neuroimage. 2024 Apr 16:120617. doi: 10.1016/j.neuroimage.2024.120617. Online ahead of print.

ABSTRACT

A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduce two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.

PMID:38636639 | DOI:10.1016/j.neuroimage.2024.120617

Ketamine induces multiple individually distinct whole-brain functional connectivity signatures

Most recent paper - Wed, 04/17/2024 - 18:00

Elife. 2024 Apr 17;13:e84173. doi: 10.7554/eLife.84173.

ABSTRACT

BACKGROUND: Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine's molecular mechanisms connect to its neural and behavioral effects.

METHODS: We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

RESULTS: We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine's data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

CONCLUSIONS: These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

FUNDING: This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1-190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016-0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 - 2056) (FXV).

CLINICAL TRIAL NUMBER: NCT03842800.

PMID:38629811 | DOI:10.7554/eLife.84173

Non-invasive suppression of the human nucleus accumbens (NAc) with transcranial focused ultrasound (tFUS) modulates the reward network: a pilot study

Most recent paper - Wed, 04/17/2024 - 18:00

Front Hum Neurosci. 2024 Apr 2;18:1359396. doi: 10.3389/fnhum.2024.1359396. eCollection 2024.

ABSTRACT

BACKGROUND: The nucleus accumbens (NAc) is a key node of the brain reward circuit driving reward-related behavior. Dysregulation of NAc has been demonstrated to contribute to pathological markers of addiction in substance use disorder (SUD) making it a potential therapeutic target for brain stimulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive brain stimulation approach that can modulate deep brain regions with a high spatial resolution. However, there is currently no evidence showing how the brain activity of NAc and brain functional connectivity within the reward network neuromodulated by tFUS on the NAc.

METHODS: In this pilot study, we carried out a single-blind, sham-controlled clinical trial using functional magnetic resonance imaging (fMRI) to investigate the underlying mechanism of tFUS neuromodulating the reward network through NAc in ten healthy adults. Specifically, the experiment consists of a 20-min concurrent tFUS/fMRI scan and two 24-min resting-state fMRI before and after the tFUS session.

RESULTS: Firstly, our results demonstrated the feasibility and safety of 20-min tFUS on NAc. Additionally, our findings demonstrated that bilateral NAc was inhibited during tFUS on the left NAc compared to sham. Lastly, increased functional connectivity between the NAc and medial prefrontal cortex (mPFC) was observed after tFUS on the left NAc, but no changes for the sham group.

CONCLUSION: Delivering tFUS to the NAc can modulate brain activations and functional connectivity within the reward network. These preliminary findings suggest that tFUS could be potentially a promising neuromodulation tool for the direct and non-invasive management of the NAc and shed new light on the treatment for SUD and other brain diseases that involve reward processing.

PMID:38628972 | PMC:PMC11018963 | DOI:10.3389/fnhum.2024.1359396

Resting state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging

Most recent paper - Tue, 04/16/2024 - 18:00

eNeuro. 2024 Apr 16:ENEURO.0173-23.2024. doi: 10.1523/ENEURO.0173-23.2024. Online ahead of print.

ABSTRACT

Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys (n=12 adolescents [6 male/6 female] ∼2.5 years and n=15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (ICA) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared to adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.Significance Statement Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.

PMID:38627065 | DOI:10.1523/ENEURO.0173-23.2024

Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer's Disease Staging

Most recent paper - Tue, 04/16/2024 - 18:00

IEEE Trans Med Imaging. 2024 Apr 16;PP. doi: 10.1109/TMI.2024.3389747. Online ahead of print.

ABSTRACT

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.

PMID:38625767 | DOI:10.1109/TMI.2024.3389747

Smoking Progression and Nicotine-Enhanced Reward Sensitivity Predicted by Resting-State Functional Connectivity in Salience and Executive Control Networks

Most recent paper - Tue, 04/16/2024 - 18:00

Nicotine Tob Res. 2024 Apr 16:ntae084. doi: 10.1093/ntr/ntae084. Online ahead of print.

ABSTRACT

INTRODUCTION: The neural underpinnings underlying individual differences in nicotine-enhanced reward sensitivity and smoking progression are poorly understood. Thus, we investigated whether brain resting-state functional connectivity (rsFC) during smoking abstinence predicts nicotine-enhanced reward sensitivity and smoking progression in young light smokers. We hypothesized that high rsFC between brain areas with high densities of nicotinic receptors (insula, anterior cingulate cortex [ACC], hippocampus, thalamus) and areas involved in reward-seeking (nucleus accumbens [NAcc], prefrontal cortex [PFC]) would predict nicotine-enhanced reward sensitivity and smoking progression.

METHODS: Young light smokers (N=64, age 18-24, M = 1.89 cigarettes/day) participated in the study. These individuals smoked between 5 to 35 cigarettes per week and lifetime use never exceeded 35 cigarettes per week. Their rsFC was assessed using functional magnetic resonance imaging after 14-hour nicotine-deprivation. Subjects also completed a probabilistic reward task after smoking a placebo on one day and a regular cigarette on another day.

RESULTS: The probabilistic-reward-task assessed greater nicotine-enhanced reward sensitivity was associated with greater rsFC between the right anterior PFC and right NAcc, but with reduced rsFC between the ACC and left inferior prefrontal gyrus and the insula and ACC. Decreased rsFC within the salience network (ACC and insula) predicted increased smoking progression across 18 months and greater nicotine-enhanced reward sensitivity.

CONCLUSIONS: These findings provide the first evidence that differences in rsFCs in young light smokers are associated with nicotine-enhanced reward sensitivity and smoking progression.

IMPLICATIONS: Weaker rsFC within the salience network predicted greater nicotine-enhanced reward sensitivity and smoking progression. These findings suggest that salience network rsFC and drug-enhanced reward sensitivity may be useful tools and potential endophenotypes for reward sensitivity and drug-dependence research.

PMID:38624067 | DOI:10.1093/ntr/ntae084