Most recent paper
Disrupted resting-state functional connectivity of the thalamus in patients with coronary heart disease
Heliyon. 2023 Feb 2;9(2):e13423. doi: 10.1016/j.heliyon.2023.e13423. eCollection 2023 Feb.
ABSTRACT
BACKGROUND: Although homeostasis of the cardiovascular system is regulated by the cerebral cortex via the autonomic nervous system, the role of abnormal brain functional connectivity (FC) networks in patients with cardiac dysfunction remains unclear. Here, we report thalamus-based FC alterations and their relationship with clinical characteristics in patients with coronary heart disease (CHD).
METHODS: We employed resting-state functional magnetic resonance imaging (rs-fMRI) to acquire imaging data in twenty-six patients with CHD alongside sixteen healthy controls (HCs). Next, we performed a thalamus-based FC analysis to profile abnormal FC patterns in the whole brain. Subsequently, the mean time series of the brain regions that survived in the FC analysis were used to determine correlations with clinical parameters in patients with CHD.
RESULTS: We found no statistically significant differences in demographic and clinical data between patients with CHD and HCs. Patients with CHD showed decreased FC patterns between bilateral thalami and left hemisphere, encompassing supplementary motor area, superior frontal gyrus, superior parietal gyrus, inferior parietal gyrus, middle cingulate cortex, lingual gyrus and calcarine sulcus.
CONCLUSIONS: These findings not only have implications in clarifying the relationship between cerebral functional imbalance and cardiovascular system, but also provide valuable insights to guide future evaluation and management of cardiac autonomic regulation via the brain-heart axis.
PMID:36814614 | PMC:PMC9939614 | DOI:10.1016/j.heliyon.2023.e13423
Alterations in regional homogeneity and multiple frequency amplitudes of low-frequency fluctuation in patients with new daily persistent headache: a resting-state functional magnetic resonance imaging study
J Headache Pain. 2023 Feb 23;24(1):14. doi: 10.1186/s10194-023-01543-y.
ABSTRACT
BACKGROUND: New daily persistent headache (NPDH) is a rare primary headache that is highly disabling. The pathophysiology of NDPH is still unclear, and we aimed to reveal the underlying mechanism of NDPH through functional magnetic resonance imaging (fMRI) analysis.
METHODS: In this cross-sectional study, thirty patients with NDPH and 30 healthy controls (HCs) were recruited. The blood oxygen level-dependent (BOLD) sequences of all participants were obtained using the GE 3.0 T system. We performed ReHo, ALFF (conventional band: 0.01-0.08 Hz, slow-5: 0.01-0.027 Hz, slow-4: 0.027-0.073 Hz) and seed-based to the whole brain functional connectivity (FC) analysis in the NDPH and HC groups. The sex difference analysis of ReHo, ALFF, and FC values was conducted in the NDPH group. We also conducted Pearson's correlation analysis between ReHo, ALFF, FC values and clinical characteristics (pain intensity, disease duration, HIT-6, GAD-7, PHQ-9, and PSQI scores).
RESULTS: Both increased ReHo (PFWE-corr = 0.012) and ALFF values (0.01-0.08 Hz, PFWE-corr = 0.009; 0.027-0.073 Hz, PFWE-corr =0.044) of the left middle occipital gyrus (MOG_L) were found in the NDPH group compared to the HC group. There was no significant difference in FC maps between the two groups. Compared to the HC group, no difference was found in ReHo (p = 0.284), ALFF (p = 0.246), and FC (p = 0.118) z scores of the MOG_L in the NDPH group. There was also no sex difference in ReHo (p = 0.288), ALFF (p = 0.859), or FC z score (p = 0.118) of the MOG_L in patients with NDPH. There was no correlation between ReHo, ALFF, FC z scores and clinical characteristics after Bonferroni correction (p < 0.05/18).
CONCLUSIONS: Patients with NDPH may have abnormal activation of the visual system. Abnormal visual activation may occur mainly in higher frequency band of the classical band. No sex differences in brain activity were found in patients with NDPH.
PMID:36814220 | DOI:10.1186/s10194-023-01543-y
Social navigation modulates the anterior and posterior hippocampal circuits in the resting brain
Brain Struct Funct. 2023 Feb 23. doi: 10.1007/s00429-023-02622-1. Online ahead of print.
ABSTRACT
Social navigation is a dynamic and complex process that requires the collaboration of multiple brain regions. However, the neural networks for navigation in a social space remain largely unknown. This study aimed to investigate the role of hippocampal circuit in social navigation from a resting-state fMRI data. Here, resting-state fMRI data were acquired before and after participants performed a social navigation task. By taking the anterior and posterior hippocampus (HPC) as the seeds, we calculated their connectivity with the whole brain using the seed-based static functional connectivity (sFC) and dynamic FC (dFC) approaches. We found that the sFC and dFC between the anterior HPC and supramarginal gyrus, sFC or dFC between posterior HPC and middle cingulate cortex, inferior parietal gyrus, angular gyrus, posterior cerebellum, medial superior frontal gyrus were increased after the social navigation task. These alterations were related to social cognition of tracking location in the social navigation. Moreover, participants who had more social support or less neuroticism showed a greater increase in hippocampal connectivity. These findings may highlight a more important role of the posterior hippocampal circuit in the social navigation, which is crucial for social cognition.
PMID:36813907 | DOI:10.1007/s00429-023-02622-1
Acute thalamic connectivity precedes chronic post-concussive symptoms in mild traumatic brain injury
Brain. 2023 Feb 22:awad056. doi: 10.1093/brain/awad056. Online ahead of print.
ABSTRACT
Chronic postconcussive symptoms are common after mild traumatic brain injury (mTBI), and are difficult to predict or treat. Thalamic functional integrity is particularly vulnerable in mTBI, and may be related to long-term outcomes, but requires further investigation. We compared structural magnetic resonance imaging (MRI) and resting state functional MRI in 108 patients with a Glasgow Coma Scale (GCS) of 13 to 15 and normal CT, and 76 controls. We examined whether acute changes in thalamic functional connectivity were early markers for persistent symptoms, and explored neurochemical associations of our findings using data from positron emission tomography. Of the mTBI cohort, 47% showed incomplete recovery 6 months post-injury. Despite the absence of structural changes, we found acute thalamic hyperconnectivity in mTBI, with specific vulnerabilities of individual thalamic nuclei. Acute fMRI markers differentiated those with chronic postconcussive symptoms, with time- and outcome-dependent relationships in a sub-cohort followed longitudinally. Moreover, emotional and cognitive symptoms were associated with changes in thalamic functional connectivity to known dopaminergic and noradrenergic targets, respectively. Our findings suggest that chronic symptoms can have a basis in early thalamic pathophysiology. This may aid identification of patients at risk of chronic postconcussive symptoms following mTBI, provide a basis for development of new therapies, and could facilitate precision medicine application of these therapies.
PMID:36811945 | DOI:10.1093/brain/awad056
Top-down and bottom-up alterations of connectivity patterns of the suprachiasmatic nucleus in chronic insomnia disorder
Eur Arch Psychiatry Clin Neurosci. 2023 Feb 22. doi: 10.1007/s00406-022-01534-1. Online ahead of print.
ABSTRACT
The importance of the suprachiasmatic nucleus (SCN, also called the master circadian clock) in regulating sleep and wakefulness has been confirmed by multiple animal research. However, human studies of SCN in vivo are still nascent. Recently, the development of resting-state functional magnetic resonance imaging (fMRI) has made it possible to study SCN-related connectivity changes in patients with chronic insomnia disorder (CID). Hence, this study aimed to explore whether sleep-wake circuitry (i.e., communication between the SCN and other brain regions) is disrupted in human insomnia. Forty-two patients with CID and 37 healthy controls (HCs) underwent fMRI scanning. Resting-state functional connectivity (rsFC) and Granger causality analysis (GCA) were performed to find abnormal functional and causal connectivity of the SCN in CID patients. In addition, correlation analyses were conducted to detect associations between features of disrupted connectivity and clinical symptoms. Compared to HCs, CID patients showed enhanced rsFC of the SCN-left dorsolateral prefrontal cortex (DLPFC), as well as reduced rsFC of the SCN-bilateral medial prefrontal cortex (MPFC); these altered cortical regions belong to the "top-down" circuit. Moreover, CID patients exhibited disrupted functional and causal connectivity between the SCN and the locus coeruleus (LC) and the raphe nucleus (RN); these altered subcortical regions constitute the "bottom-up" pathway. Importantly, the decreased causal connectivity from the LC-to-SCN was associated with the duration of disease in CID patients. These findings suggest that the disruption of the SCN-centered "top-down" cognitive process and "bottom-up" wake-promoting pathway may be intimately tied to the neuropathology of CID.
PMID:36811711 | DOI:10.1007/s00406-022-01534-1
Progressive Voxel-Wise Homotopic Connectivity from childhood to adulthood: Age-related functional asymmetry in resting-state functional magnetic resonance imaging
Dev Psychobiol. 2023 Mar;65(2):e22366. doi: 10.1002/dev.22366.
ABSTRACT
Homotopic connectivity during resting state has been proposed as a risk marker for neurologic and psychiatric conditions, but a precise characterization of its trajectory through development is currently lacking. Voxel-Mirrored Homotopic Connectivity (VMHC) was evaluated in a sample of 85 neurotypical individuals aged 7-18 years. VMHC associations with age, handedness, sex, and motion were explored at the voxel-wise level. VMHC correlates were also explored within 14 functional networks. Primary and secondary outcomes were repeated in a sample of 107 adults aged 21-50 years. In adults, VMHC was negatively correlated with age only in the posterior insula (false discovery rate p < .05, >30-voxel clusters), while a distributed effect among the medial axis was observed in minors. Four out of 14 considered networks showed significant negative correlations between VMHC and age in minors (basal ganglia r = -.280, p = .010; anterior salience r = -.245, p = .024; language r = -.222, p = .041; primary visual r = -.257, p = .017), but not adults. In minors, a positive effect of motion on VMHC was observed only in the putamen. Sex did not significantly influence age effects on VMHC. The current study showed a specific decrease in VMHC for minors as a function of age, but not adults, supporting the notion that interhemispheric interactions can shape late neurodevelopment.
PMID:36811370 | DOI:10.1002/dev.22366
Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample
Genes Brain Behav. 2023 Feb 21:e12838. doi: 10.1111/gbb.12838. Online ahead of print.
ABSTRACT
Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.
PMID:36811275 | DOI:10.1111/gbb.12838
Cortico-striatal networking deficits associated with advanced HIV disease and cocaine use
J Neurovirol. 2023 Feb 21. doi: 10.1007/s13365-023-01120-8. Online ahead of print.
ABSTRACT
Cocaine use is disproportionately prevalent in people with HIV (PWH) and is known to potentiate HIV neuropathogenesis. As both HIV and cocaine have well-documented cortico-striatal effects, PWH who use cocaine and have a history of immunosuppression may exhibit greater FC deficits compared to PWH without these conditions. However, research investigating the legacy effects of HIV immunosuppression (i.e., a history of AIDS) on cortico-striatal functional connectivity (FC) in adults with and without cocaine use is sparse. Resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessment data from 273 adults were analyzed to examine FC in relation to HIV disease: HIV-negative (n = 104), HIV-positive with nadir CD4 ≥ 200 (n = 96), HIV-positive with nadir CD4 < 200 (AIDS; n = 73), and cocaine use (83 COC and 190 NON). Using independent component analysis/dual regression, FC was assessed between the basal ganglia network (BGN) and five cortical networks: dorsal attention network (DAN), default mode network, left executive network, right executive network, and salience network. There were significant interaction effects such that AIDS-related BGN-DAN FC deficits emerged in COC but not in NON participants. Independent of HIV, cocaine effects emerged in FC between the BGN and executive networks. Disruption of BGN-DAN FC in AIDS/COC participants is consistent with cocaine potentiation of neuro-inflammation and may be indicative of legacy HIV immunosuppressive effects. The current study bolsters previous findings linking HIV and cocaine use with cortico-striatal networking deficits. Future research should consider the effects of the duration of HIV immunosuppression and early treatment initiation.
PMID:36809507 | DOI:10.1007/s13365-023-01120-8
Abnormal functional connectivity of the posterior hypothalamus and other arousal regions in surgical temporal lobe epilepsy
J Neurosurg. 2023 Feb 17:1-11. doi: 10.3171/2023.1.JNS221452. Online ahead of print.
ABSTRACT
OBJECTIVE: This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance.
METHODS: The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests.
RESULTS: The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations.
CONCLUSIONS: This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.
PMID:36807210 | DOI:10.3171/2023.1.JNS221452
A Residual Marker of Cognitive Reserve Is Associated with Resting-State Intrinsic Functional Connectivity Along the Alzheimer's Disease Continuum
J Alzheimers Dis. 2023 Feb 15. doi: 10.3233/JAD-220464. Online ahead of print.
ABSTRACT
BACKGROUND: Cognitive reserve (CR) explains inter-individual differences in the impact of the neurodegenerative burden on cognitive functioning. A residual model was proposed to estimate CR more accurately than previous measures. However, associations between residual CR markers (CRM) and functional connectivity (FC) remain unexplored.
OBJECTIVE: To explore the associations between the CRM and intrinsic network connectivity (INC) in resting-state networks along the neuropathological-continuum of Alzheimer's disease (ADN).
METHODS: Three hundred eighteen participants from the DELCODE cohort were stratified using cerebrospinal fluid biomarkers according to the A(myloid-β)/T(au)/N(eurodegeneration) classification. CRM was calculated utilizing residuals obtained from a multilinear regression model predicting cognition from markers of disease burden. Using an independent component analysis in resting-state fMRI data, we measured INC of resting-state networks, i.e., default mode network (DMN), frontoparietal network (FPN), salience network (SAL), and dorsal attention network. The associations of INC with a composite memory score and CRM and the associations of CRM with the seed-to-voxel functional connectivity of memory-related were tested in general linear models.
RESULTS: CRM was positively associated with INC in the DMN in the entire cohort. The A+T+N+ group revealed an anti-correlation between the SAL and the DMN. Furthermore, CRM was positively associated with anti-correlation between memory-related regions in FPN and DMN in ADN and A+T/N+.
CONCLUSION: Our results provide evidence that INC is associated with CRM in ADN defined as participants with amyloid pathology with or without cognitive symptoms, suggesting that the neural correlates of CR are mirrored in network FC in resting-state.
PMID:36806502 | DOI:10.3233/JAD-220464
Frequency-specific brain network architecture in resting-state fMRI
Sci Rep. 2023 Feb 20;13(1):2964. doi: 10.1038/s41598-023-29321-5.
ABSTRACT
The analysis of brain function in resting-state network (RSN) models, ascertained through the functional connectivity pattern of resting-state functional magnetic resonance imaging (rs-fMRI), is sufficiently powerful for studying large-scale functional integration of the brain. However, in RSN-based research, the network architecture has been regarded as the same through different frequency bands. Thus, here, we aimed to examined whether the network architecture changes with frequency. The blood oxygen level-dependent (BOLD) signal was decomposed into four frequency bands-ranging from 0.007 to 0.438 Hz-and the clustering algorithm was applied to each of them. The best clustering number was selected for each frequency band based on the overlap ratio with task activation maps. The results demonstrated that resting-state BOLD signals exhibited frequency-specific network architecture; that is, the networks finely subdivided in the lower frequency bands were integrated into fewer networks in higher frequency bands rather than reconfigured, and the default mode network and networks related to perception had sufficiently strong architecture to survive in an environment with a lower signal-to-noise ratio. These findings provide a novel framework to enable improved understanding of brain function through the multiband frequency analysis of ultra-slow rs-fMRI data.
PMID:36806195 | DOI:10.1038/s41598-023-29321-5
Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI
J Cereb Blood Flow Metab. 2023 Feb 21:271678X231158434. doi: 10.1177/0271678X231158434. Online ahead of print.
ABSTRACT
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
PMID:36803280 | DOI:10.1177/0271678X231158434
Altered Spinal Cord Functional Connectivity Associated with Parkinson's Disease Progression
Mov Disord. 2023 Feb 21. doi: 10.1002/mds.29354. Online ahead of print.
ABSTRACT
BACKGROUND: Parkinson's disease (PD) has traditionally been viewed as an α-synucleinopathy brain pathology. Yet evidence based on postmortem human and animal experimental models indicates that the spinal cord may also be affected.
OBJECTIVE: Functional magnetic resonance imaging (fMRI) seems to be a promising candidate to better characterize spinal cord functional organization in PD patients.
METHODS: Resting-state spinal fMRI was performed in 70 PD patients and 24 age-matched healthy controls, the patients being divided into three groups based on their motor symptom severity: PDlow (n = 24), PDmed (n = 22), and PDadv (n = 24) groups. A combination of independent component analysis (ICA) and a seed-based approach was applied.
RESULTS: When pooling all participants, the ICA revealed distinct ventral and dorsal components distributed along the rostro-caudal axis. This organization was highly reproducible within subgroups of patients and controls. PD severity, assessed by Unified Parkinson's Disease Rating Scale (UPDRS) scores, was associated with a decrease in spinal functional connectivity (FC). Notably, we observed a reduced intersegmental correlation in PD as compared to controls, the latter being negatively associated with patients' upper-limb UPDRS scores (P = 0.0085). This negative association between FC and upper-limb UPDRS scores was significant between adjacent C4-C5 (P = 0.015) and C5-C6 (P = 0.20) cervical segments, levels associated with upper-limb functions.
CONCLUSIONS: The present study provides the first evidence of spinal cord FC changes in PD and opens new avenues for the effective diagnosis and therapeutic strategies in PD. This underscores how spinal cord fMRI can serve as a powerful tool to characterize, in vivo, spinal circuits for a variety of neurological diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
PMID:36802374 | DOI:10.1002/mds.29354
Abnormal brain network community structure related to psychological stress in schizophrenia
Schizophr Res. 2023 Feb 15;254:42-53. doi: 10.1016/j.schres.2023.02.007. Online ahead of print.
ABSTRACT
Recent functional imaging studies in schizophrenia consistently report a disruption of brain connectivity. However, most of these studies analyze the brain connectivity during resting state. Since psychological stress is a major factor for the emergence of psychotic symptoms, we sought to characterize the brain connectivity reconfiguration induced by stress in schizophrenia. We tested the hypothesis that an alteration of the brain's integration-segregation dynamic could be the result of patients with schizophrenia facing psychological stress. To this end, we studied the modular organization and the reconfiguration of networks induced by a stress paradigm in forty subjects (twenty patients and twenty controls), thus analyzing the dynamics of the brain in terms of integration and segregation processes by using 3T-fMRI. Patients with schizophrenia did not show statistically significant differences during the control task compared with controls, but they showed an abnormal community structure during stress condition and an under-connected reconfiguration network with a reduction of hub nodes, suggesting a deficit of integration dynamic with a greater compromise of the right hemisphere. These results provide evidence that schizophrenia has a normal response to undemanding stimuli but shows a disruption of brain functional connectivity between key regions involved in stress response, potentially leading to altered functional brain dynamics by reducing integration capacity and showing deficits recruiting right hemisphere regions. This could in turn underlie the hyper-sensitivity to stress characteristic of schizophrenia.
PMID:36801513 | DOI:10.1016/j.schres.2023.02.007
Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain
Neuroimage. 2023 Feb 16:119944. doi: 10.1016/j.neuroimage.2023.119944. Online ahead of print.
ABSTRACT
The human brain is a complex network that exhibits dynamic fluctuations in activity across space and time. Depending on the analysis method, canonical brain networks identified from resting-state fMRI (rs-fMRI) are typically constrained to be either orthogonal or statistically independent in their spatial and/or temporal domains. We avoid imposing these potentially unnatural constraints through the combination of a temporal synchronization process ("BrainSync") and a three-way tensor decomposition method ("NASCAR") to jointly analyze rs-fMRI data from multiple subjects. The resulting set of interacting networks comprises minimally constrained spatiotemporal distributions, each representing one component of functionally coherent activity across the brain. We show that these networks can be clustered into six distinct functional categories and naturally form a representative functional network atlas for a healthy population. This functional network atlas could help explore group and individual differences in neurocognitive function, as we demonstrate in the context of ADHD and IQ prediction.
PMID:36801371 | DOI:10.1016/j.neuroimage.2023.119944
Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity
Neuroimage. 2023 Feb 16:119946. doi: 10.1016/j.neuroimage.2023.119946. Online ahead of print.
ABSTRACT
Characterizing the optimal fMRI paradigms for detecting behaviorally relevant functional connectivity (FC) patterns is a critical step to furthering our knowledge of the neural basis of behavior. Previous studies suggested that FC patterns derived from task fMRI paradigms, which we refer to as task-based FC, are better correlated with individual differences in behavior than resting-state FC, but the consistency and generalizability of this advantage across task conditions was not fully explored. Using data from resting-state fMRI and three fMRI tasks from the Adolescent Brain Cognitive Development Study ® (ABCD), we tested whether the observed improvement in behavioral prediction power of task-based FC can be attributed to changes in brain activity induced by the task design. We decomposed the task fMRI time course of each task into the task model fit (the fitted time course of the task condition regressors from the single-subject general linear model) and the task model residuals, calculated their respective FC, and compared the behavioral prediction performance of these FC estimates to resting-state FC and the original task-based FC. The FC of the task model fit was better than the FC of the task model residual and resting-state FC at predicting a measure of general cognitive ability or two measures of performance on the fMRI tasks. The superior behavioral prediction performance of the FC of the task model fit was content-specific insofar as it was only observed for fMRI tasks that probed similar cognitive constructs to the predicted behavior of interest. To our surprise, the task model parameters, the beta estimates of the task condition regressors, were equally if not more predictive of behavioral differences than all FC measures. These results showed that the observed improvement of behavioral prediction afforded by task-based FC was largely driven by the FC patterns associated with the task design. Together with previous studies, our findings highlighted the importance of task design in eliciting behaviorally meaningful brain activation and FC patterns.
PMID:36801369 | DOI:10.1016/j.neuroimage.2023.119946
Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability
J Headache Pain. 2023 Feb 20;24(1):13. doi: 10.1186/s10194-023-01551-y.
ABSTRACT
OBJECTIVE: The changes in resting-state functional networks and their correlations with clinical traits remain to be clarified in migraine. Here we aim to investigate the brain spatio-temporal dynamics of resting-state networks and their possible correlations with the clinical traits in migraine.
METHODS: Twenty Four migraine patients without aura and 26 healthy controls (HC) were enrolled. Each included subject underwent a resting-state EEG and echo planar imaging examination. The disability of migraine patients was evaluated by Migraine Disability Assessment (MIDAS). After data acquisition, EEG microstates (Ms) combining functional connectivity (FC) analysis based on Schafer 400-seven network atlas were performed. Then, the correlation between obtained parameters and clinical traits was investigated.
RESULTS: Compared with HC group, the brain temporal dynamics depicted by microstates showed significantly increased activity in functional networks involving MsB and decreased activity in functional networks involving MsD; The spatial dynamics were featured by decreased intra-network FC within the executive control network( ECN) and inter-network FC between dorsal attention network (DAN) and ECN (P < 0.05); Moreover, correlation analysis showed that the MIDAS score was positively correlated with the coverage and duration of MsC, and negatively correlated with the occurrence of MsA; The FC within default mode network (DMN), and the inter-FC of ECN- visual network (VN), ECN- limbic network, VN-limbic network was negatively correlated with MIDAS. However, the FC of DMN-ECN was positively correlated with MIDAS; Furthermore, significant interactions between the temporal and spatial dynamics were also obtained.
CONCLUSIONS: Our study confirmed the notion that altered spatio-temporal dynamics exist in migraine patients during resting-state. And the temporal dynamics, the spatial changes and the clinical traits such as migraine disability interact with each other. The spatio-temporal dynamics obtained from EEG microstate and fMRI FC analyses may be potential biomarkers for migraine and with a huge potential to change future clinical practice in migraine.
PMID:36800935 | DOI:10.1186/s10194-023-01551-y
Functional brain network alterations in the co-occurrence of autism spectrum disorder and attention deficit hyperactivity disorder
Eur Child Adolesc Psychiatry. 2023 Feb 17. doi: 10.1007/s00787-023-02165-0. Online ahead of print.
ABSTRACT
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two highly prevalent and commonly co-occurring neurodevelopmental disorders. The neural mechanisms underpinning the comorbidity of ASD and ADHD (ASD + ADHD) remain unclear. We focused on the topological organization and functional connectivity of brain networks in ASD + ADHD patients versus ASD patients without ADHD (ASD-only). Resting-state functional magnetic resonance imaging (rs-fMRI) data from 114 ASD and 161 typically developing (TD) individuals were obtained from the Autism Brain Imaging Data Exchange II. The ASD patients comprised 40 ASD + ADHD and 74 ASD-only individuals. We constructed functional brain networks for each group and performed graph-theory and network-based statistic (NBS) analyses. Group differences between ASD + ADHD and ASD-only were analyzed at three levels: nodal, global, and connectivity. At the nodal level, ASD + ADHD exhibited topological disorganization in the temporal and occipital regions, compared with ASD-only. At the global level, ASD + ADHD and ASD-only displayed no significant differences. At the connectivity level, the NBS analysis revealed that ASD + ADHD showed enhanced functional connectivity between the prefrontal and frontoparietal regions, as well as between the orbitofrontal and occipital regions, compared with ASD-only. The hippocampus was the shared region in aberrant functional connectivity patterns in ASD + ADHD and ASD-only compared with TD. These findings suggests that ASD + ADHD displays altered topology and functional connectivity in the brain regions that undertake social cognition, language processing, and sensory processing.
PMID:36800038 | DOI:10.1007/s00787-023-02165-0
Classify patients with Moyamoya disease according to their cognitive performance might be helpful in clinical and practical with support vector machine based on hypergraph
Hum Brain Mapp. 2023 Feb 17. doi: 10.1002/hbm.26218. Online ahead of print.
ABSTRACT
Moyamoya disease (MMD) patients were now classified according to their cerebrovascular manifestations, with cognition and emotion ignored, which attenuated the therapy. The present study tried to classify them based on their cognitive and emotional performance and explored the neural basis underlying this classification using resting-state fMRI (rs-fMRI). Thirty-nine MMD patients were recruited, assessed mental function and MRI scanned. We adopted hierarchical analysis of their mental performance for new subtypes. Next, a three-step analysis, with each step consisting of 10 random cross validation, was conducted for robust brain regions in classifying the three subtypes of patients in a support vector machine (SVM) model with hypergraph of rs-fMRI. We found three new subtypes including high depression-high anxiety-low cognition (HE-LC, 50%), low depression-low anxiety-high cognition (LE-HC, 14%), and low depression-low anxiety-low cognition (LE-LC, 36%), and no hemorrhagic MMD patients fell into the LE-HC group. The temporal and the bilateral superior frontal cortex, and so forth were included in all 10 randomized SVM modeling. The classification accuracy of the final three-way classification model was 67.5% in average of 10 random cross validation. In addition, the S value between the frontal cortex and the angular cortex was positively correlated with the anxiety score and backward digit span (p < .05). Our results might provide a new perspective for MMD classification concerning patients' mental status, guide timely surgery and suggest angular cortex, and so forth should be protected in surgery for cognitive consideration.
PMID:36799621 | DOI:10.1002/hbm.26218
Resting-state neural correlates of visual Gestalt experience
Cereb Cortex. 2023 Feb 16:bhad029. doi: 10.1093/cercor/bhad029. Online ahead of print.
ABSTRACT
Subjective perceptual experience is influenced not only by bottom-up sensory information and experience-based top-down processes, but also by an individual's current brain state. Specifically, a previous study found increased prestimulus insula and intraparietal sulcus (IPS) activity before participants perceived an illusory Gestalt (global) compared with the non-illusory (local) interpretation of a bistable stimulus. That study provided only a snapshot of the brain state that favors the illusory interpretation. In the current study, we tested whether areas that differentiate between the illusory and non-illusory perception, immediately before stimulus onset, are also associated with an individual's general tendency to perceive it, which remains stable over time. We examined individual differences in task-free functional connectivity of insula and IPS and related them to differences in the individuals' duration of the two stimulus interpretations. We found stronger connectivity of the IPS with areas of the default mode and visual networks to be associated with shorter local perceptual phases, i.e. a faster switch to an illusory percept, and an opposite effect for insula connectivity with the early visual cortex. Our findings suggest an important role of IPS and insula interactions with nodes of key intrinsic networks in forming a perceptual tendency toward illusory Gestalt perception.
PMID:36799546 | DOI:10.1093/cercor/bhad029